圆柱体积的教学反思-澳门凯发

2024-06-08 21:11:31 教学反思

圆柱体积的教学反思

作为一位到岗不久的教师,我们要有很强的课堂教学能力,写教学反思能总结教学过程中的很多讲课技巧,教学反思要怎么写呢?下面是小编为大家整理的圆柱体积的教学反思,仅供参考,欢迎大家阅读。

圆柱体积的教学反思1

本节课我注重知识的形成过程,使学生能主动学习新知,突破难点、疑点,能解决实际问题。

1、在教学过程中,让学生自主合作、探究,经历猜想、操作、验证、讨论、归纳等数学活动。比如,我从圆柱模型拼成长方体入手,强调它们是等底等高长方体。由长方体体积公式v=sh,猜想圆柱的体积公式。再通过学生的具体实际操作、小组合作探究,从而探索出圆柱体积公式,并掌握圆柱体积的计算方法,能解决与圆柱体积计算相关的一些简单的实际问题。

2、在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,从而理解圆柱的底面积与长方体底面积相等。这样有利于培养学生应用已有知识解决新问题的.能力,发展空间观念和初步的推理能力。

3、本节课中,我最大的遗憾就是没有采用多媒体课件。但我认为一节好课就非要使用多媒体课件吗?其实不然。当然,今天我在教学中,确实有许多的不足。比如,将圆柱体切割成若干等份,等份越多,分得越细,就越接近于长方体。倘若使用了多媒体课件演示,或许效果更明显。

总之,今天教学中的不足,我会不断改进。既面向全体学生,又注重不同学生的不同发展,设计更精、更符合学生发展的梯度问题,让他们在有限的时空内愉快学习、成长!

圆柱体积的教学反思2

新课程观强调:

教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?本人结合“圆柱的体积”一课谈谈自己的实践与思考。

[片段一]

师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册p8):一根圆柱形钢材,底面积是20平方厘米,高是1。5米,它的体积是多少?

由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

1.5米=150厘米20×1150=3000(立方厘米)

师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

①20平方厘米=0.002平方米 0。002×11.5=0.003(立方米)

②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)

师:为什么会出现三种结果?

经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

[片断二]

巩固与应用阶段,我将教材练习二中的一个填表题进行了加工组合呈现给学生这样一个表格。

学生填表后,师:观察前两组数据,你想说什么?

学生独立思考后再小组交流,最后汇报。

生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

生2:两个圆柱的高相等,底面积越大,体积就越大。

师:观察后两组数据,你想说什么?

有了前面的基础,学生很容易说出了后两组的关系。

学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。

[片段三]

教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

学生动手测量自备的圆柱形茶杯的有关数据并计算它的体积。

师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

[教学反思]

精心研究教材是用好教材的基础

教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的.教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

落实课标理念是用好教材的关键

能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

学生获得发展是用好教材的标准

有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

圆柱体积的教学反思3

《数学课程标准》指出“数学教学要让学生经历知识的形成过程”;“通过义务教育阶段的学习,学生能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其它学科学习中的问题,增加应用数学的意识”。不难发现新课标注重的不只是让学生掌握学习中的结论,更关注的是他们个性的体验,在学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。为此,在本小节的教学中我着重做了以下几点:

一、创设问题情境,激发学生求知兴趣

学习圆柱的体积我是这样创设情境:1、长方体、正方体的体积是怎样求的?(根据学生回答统一为v=sh)2、圆的面积是怎样推导的?(化曲为直)3、如何求出圆柱的体积?能否借助于学过的知识和方法来推导圆柱的体积计算方法?一系列问题情境的创设,既有复习让学生做好知识上的储备,以便探求新知,又有一定的指导性、帮助性、鼓励性,容易激发学生求知的兴趣,调动学生参与学习的热情,同时也便于学生掌握学习的方向,不致于在下面的学习过程中显得无所适从。

二、预设开放情境,引发学生操作欲望

圆柱的体积公式推导教材上编排的只是一种摆放的方式,有一定的局限性,容易限制学生的思维,也容易引起学生想入非非。此处是教学中很好的生成资源,是引发学生操作、探究、解决心中疑问的切入点。教学中,我并没有一味的按书本的方式让学生去摆放长方体,而是为学生预设一种开放的情境:把圆柱体切开后,拼成的长方体有哪几种摆放的方式?它们的底面积和高与圆柱的哪些部有关系?一石激起千层浪,学生小组操作兴趣盎然,通过摆一摆、放一放、找一找、说一说,学生发现无论竖放、立放还是平放,从哪个角度思考,均能得到圆柱体积的'计算公式为v=sh,学生大呼神奇。是的,这就是数学的魅力,这就是学生在经历知识形成过程中所获得成功的乐趣,学生亲身感受到数学的美,领略到数学天地中的风光无限,这是学生最开心的,也是课堂教学应追求的精彩。

三、增设创新情境,诱发学生探究动机

在圆柱体积应用的教学中,教材中的例5是求物体的容积,计算结果要求保留一位小数(26847立方厘米≈26.8立方分米),教材在编写的时候可能没注意到容积计算应如何取近似值,而例题的设计又偏偏正好是“四舍”,忽略了生活中的一些实际情况,此处容易给学生造成知识上的欠缺,为此在教学中,我结合前面已学过的“进一法”,为学生增设了一个情境:如果要求得数保留整数,值应取多少?有的学生根据已有的知识经验进行讨论,有的学生联系生活实际说明理由,讨论很是激烈,个个争得面红耳赤,借助交流的机会,老师给予适当的点拔和引导,学生终究明白“四舍五入法”、“进一法”、“去尾法”的不同用处。课书没有出现的知识,学生通过自己的研究与探索获得,内心的喜悦是无法比拟的,学生探究问题意识增强的同时,随之创新能力也得到了不断的发展。

教育家第斯多惠曾说:“教学的艺术不仅仅在于传授本领,而在于激励、呼唤、鼓励。”事实上,学生对力所能及而又需要亲身探究的问题最感兴趣,因此,老师在教学中应根据教学内容、教学需要,适当调整教材,加工教材,合理创设有效的教学情境去启发学生的思维,鼓励学生创新,激励学生探索,呼唤学生学习积极性。

圆柱体积的教学反思4

“圆柱的体积”一课是在学生已经学习了“正方体的体积”和“长方体的体积”“圆柱的认识”“圆柱的表面积”等相关知识的基础上进行教学的。同时又是为学生今后进一步学习其他立体图形的有关知识做好充分准备的一堂课。结合本课的教学实际情况,反思如下:

一、创设问题情境。

上课开始提出“我们认识了哪些立体图形?它们的体积怎样求?现在我想知道这块橡皮泥的体积或这个瓶子的容积,该怎么办?”学生提出“把橡皮泥捏成长方体的形状,把瓶子里装满水,再倒入一个长方体的盒子里,就可以求出来瓶子的容积了”。这样不断地引导学生运用已有的生活经验和旧知,探索和解决实际问题,并制造认知冲突,形成了“任务驱动”的探究氛围。

二、知识过程,让学生在参与中学习。

首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。然后小组同学想办法加以验证。有的组将圆柱体橡皮泥捏成长方体,计算出了橡皮泥的体积。有的组通过圆的面积公式推导,将圆柱体分成若干等分后再拼成长方体。通过计算长方体的体积推导出圆柱体的体积。然后让学生比较圆柱体的`底面积、高与长方体的底面积、高之间的关系,使学生确信自己的猜想是正确的。

三、在讨论交流中学。

通过实验验证之后,让学生看书自学,按照书中介绍的方法自己推导出圆柱体的体积公式。小组进行如下讨论:

(1)拼成的近似长方体体积与原来的圆柱体积有什么关系?

(2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?

(3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且还发挥了学生的主动性。

在这一环节中我处理的有点仓促,没有给所有学生充分的思考和探究的时间。如能抓住这一契机让全体学生都去操作、思考、探究可能会更有利于学生理解和掌握公式。在今后的教学中我要特别关注学生的学习过程,要根据教学要求,优化课堂教学的需要对教材进行适当的加工处理。

圆柱体积的教学反思5

精心研究教材是用好教材的基础 教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

学生获得发展是用好教材的标准,有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

今天教学了圆柱的体积,教学时由于学生手头上早有学具——圆柱体积的演示器,因而学生很容易想到把圆柱转化成长方体的方法,困难之处是学生在语言叙述时有些困难,比如沿着什么剪,平分成无数个什么图形……(在形成方法后,让学生互相说了两遍)。

在实际教学时还是按部就班,先复习了长方体的体积计算方法,再由例4图介入——先出示前面的长方体和正方体,让生知道统一的算法后,再出示圆柱让生猜测之间的联系,继而让学生设法验证——

但是此处教材设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方体计算体积吗?”可是学生早以有了圆柱体的演示学具,显得有些多余(此是教学的一大困惑)。实际教学时还是由圆过渡到圆柱与长方体的联系上来,让学生讨论方法及之间的联系。我又借助了flash课件,辅助认识平均分成更多的'份数越来越接近长方体……

有一点,就是学生学具上其中的一块又被平均分成了两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的示意图并没有这样的过程(以前的教材是和学具一样的)。

我认为教材的方法是很可取的,符合极限思想,因为就是不再平均切分一块后移接,如果我们均分的份数无限多时,拼成的图形也一定是一个长方体,何必多此一举呢?

另外,我在网上的教案中看到了这样的一个统一公式:直柱体的体积=底面积×高,觉得有些道理,教学时使用了,让学生分别说出三种立体图形的体积公式后,进行发现,得出此点(顺水推舟),但是接下来还进行了一些提高性的应用练习,出示了三个直柱体(一个是直三棱柱,一个是直六棱柱,一个是底面是梯形的直柱体)告之底面积和高试它们的体积。不知这一教学环节是否可取?

圆柱体积的教学反思6

对《圆柱的体积》一节,备课阶段,我跟冯老师讨论过,3.19下午,又全程聆听了三位教师的同课异构,领略了他们不同个性的教学风格。在我看来,尽管是同课异构,尽管是个性课堂,一些基本的原则还是要遵守的。例如,深入地理解教材,例如,尽可能地保持数学的逻辑严密性,等等。

对于这节教材的理解,最严重的分歧可能来自圆柱的体积公式。教材为什么给出的是“v=sh”而不是“v=πrh”。我想,这里的原因大概有两个:一是要统一(柱体的)体积公式,减轻学生的记忆负担。事实上,v=sh也确实更能体现柱体体积的本质,不同柱体体积的不同公式,只是进一步描述了它们的不同的s罢了。另一个原因,是为方便学生对公式推导过程的理解。当圆柱被分割为有限个曲面三棱柱并拼为准长方体时,半径r只是接近而并没有等于长方体的宽,只有这个分割被无限化(取极限)时,圆柱的半径才能与长方体的宽相等。因此,与其让学生去费解地或不求甚解地观察“长方体的宽与圆柱的半径的'关系”,还不如只观察两者的底面积s。在我看来,这样地处理,是新教材较旧教材高明之处,而有的教师之所以走回老路,恐怕是对新教材理解不到位的缘故。

对于这节课的异构,分歧最大的地方可能是对探索或计算的侧重,以及是否需要、是否可以有多种探索方法。从教材的表述看,这节课的新授完全围绕着公式的提出(猜想)、推导(验证)展开,其第一课时的教学重点无疑应当放在公式的探索上。至于探索的途径或方法,我认为,主要有两个:一是转化,把圆柱体转化为长方体,二是验算,假设猜想的公式是正确的,利用它算出结果并设法检验。例如,可以将圆柱形固体放到较大的液体量具中,通过比较圆柱体积的猜想值与液体体积的增长量,证明体积计算的正确性。也可以将圆柱体形状的橡皮泥捏成长方体形状,如果能够在变形的过程中保持高的不变,则可以直接证明所猜想公式的正确性,否则,就要通过计算来作出间接的证明。如何理解教材中“堆硬币”的意图?我以为,这段教材的用意在于“提出猜想”而非验证猜想。之所以这样认为,原因有二,一是教材的表述,它说的是:“从‘堆硬币’来看,用‘底面积乘高’可以计算出圆柱的体积。”而不是说圆柱的体积就是底面积乘高’。二是如果作为验证方法,在逻辑上就犯了循环论证的错误,因为硬币本身实际上也是圆柱,它的体积是否等于底面积乘高,本身就是要待验证的。冯老师在教学中将其处理为“无数个圆叠加成为圆柱”,则使得它在逻辑上不再循环(虽然,这里的“积分过程”包含的极限思想要比“化圆为方”更难为小学生所理解。)。我认为,由于“堆硬币”的目的在于换一个角度提出猜想,教学中当学生能够提出猜想时,“叠圆成柱”的过程就显得不那么非要不可了。而通过多媒体课件演示圆柱的“化圆为方”的过程却是完全必要的。教师与学生一道经历了把十六等分的曲面三棱柱拼成“准长方体”之后,可以引导学生观察这个长方体的“近似性”,并启发他们想象当等分的数量增大到三十二、六十四、----的情况,在其想象之后,再用课件演示极限化的过程,大多数学生应当是可以真正理解的。

圆柱体积的教学反思7

《圆柱的体积》要求让学生经历“类比猜想—验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。教学一开始,我就先让学生回忆圆的.面积公式我们是如何得到的,有的同学马上想到用转化的方法,接着我再提出:那么你认为圆柱的体积公式该如何推导呢?学生自然而然就想到也用转化的方法,然后我再让学生分成四人小组活动,充分利用学具盒的学具讨论如何得到圆柱的体积公式。

最后,学生通过积极的讨论、交流后,很自然的想到把圆柱转化成长方体,并根据长方体与圆柱的关系来推导出圆柱的体积公式。这样运用原有的经验让学生去解答,充分激发了学生学习的潜能,大大调动了学生的学习积极性,学生学得愉快,我也教得轻松,真是事半功倍。

圆柱体积的教学反思8

今天上了《圆柱的体积》一课,觉得比以前上得轻松,回到办公室细细品味上课的过程,颇有几分感受:

在本课中,当学生面对新的问题情境—“圆柱的体积该怎么求?”时,能从圆的面积公式的推导,根据已有的知识作出 “转化”的判断。当然,由于知识经验的不足,表达得不是很清晰。但学生的这些都是有价值的。这些“猜想”闪烁着学生智慧的火花,折射出学生的创造精神。在此基础上,让学生以小组合作方式,利用已切开的圆柱体教具进行验证,在讨论声中,学生获得了真知。可见,教师要保护学生的`创造热情并给以科学探究方法的引导,以发展学生的创造性。在这点上,我对学生的探究精神给予了充分的肯定。这节课再次让我知道了,相信学生的创造力是我们设计教法的前提。

在引导学生解决“粉笔的体积”等这个问题时,课堂上有学生把它当作圆柱体积来求,提出:“误差这么小,是可行的。”而且那位学生要求的仅是一个大约的数值,所以用这种方法可以。但这种计算粉笔体积的方法可行吗?如果我不提出疑义,也不加以说明,就会给学生造成“圆台的体积可以用这两种方法来计算”的错误认识,对学生的后续学习会造成一些不利的影响。我就这个问题引导学生进一步探索,使学生发现平面图形中的一些规律照搬到立体图形中有时会行不通,懂得知识并非一成不变的,有其发展性,初步理解三维空间物体与二维平面图形的联系与区别,为进一步学习积累经验。学生在探索过程中,虽不能很快获得结论性的知识,但却尝试了科学探究的方法,形成良好的思维品质,增进了情感体验。这样,既保护了学生的创造性,又保证了教学内容的科学性,就学生的发展而言,谁能说让学生经历这样探究的过程,不也比获得现成的结论更富有积极的意义?

圆柱体积的教学反思9

《圆柱的体积》以前教学此内容时,由于没有相应的教具,往往直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:v=sh,让学生套公式练习;这学期我教本节课内容时,课前作了充分准备了教具,再加之网上收集整理出来相应的教学课件,课堂教学我让学生自己动手实践、自主探索与合作交流,让学生实践中体验,从而获得知识。总之让学生的手、脑、嘴、眼各种器官充分利用起来,让学生不仅学到知识,而且让学生体验学习的过程,真正理解圆柱体积的推导过程,让学生真正成为学习的主人。对此,我有以下的感想

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的`答案也不是我告诉的,而是学生在自己艰苦的学习中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。这样学生不但尝到了知识,更重要的是他们掌握了学习数学的方法,这样有利于孩子将来的发展。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。本节课我让学生联系圆的面积推导的基础上,让学生自主探究圆柱的体积的推导过程。充分体现了这一理念。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

圆柱体积的教学反思10

【学习目标】

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

【学习过程】

一、板书课题

师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

二、出示目标

本节课我们的目标是:(出示)

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

了达到目标,下面请大家认真地看书。

三、出示自学指导

认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

1、圆柱的体积公式是如何推导出来的?

2、圆柱的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第20页“做一做”和第21页第5题。

要求:1、认真观察,正确书写,每一步都要写出来。

2、写完的同学认真检查。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第1题:认为算式列对的请举手?

【圆柱的体积=底面积×高】

2、看第2题:认为算式列对的举手?你是怎么思考的?

3、看计算过程和结果,认为对的举手?

4、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

六、补充练习:

1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积。

3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练(课本练习三,第21页)

作业:第3、4、7、8题写作业本上

练习:第1题写书上,第2、6、9、10题写练习本上

八、板书设计

课题三:圆柱的体积

圆柱的体积=底面积×高

课后反思:

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的`这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱体积的教学反思11

《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

一、在教学过程的设计方面

1、导入时,力求突破教材,有所创新

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

2、新课时,要实现人人参与,主动学习

学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

3、练习时,形式多样,层层递进

例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:v=sh。

b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:v=πr2h。

c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:v=π(d/2)2h。

d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:v=π(c÷π÷2)2h。

e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:v=π(s侧÷h÷π÷2)2h。

因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

二、在教学策略方面

我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的'过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

三、在教学技能方面

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

四、教学要达到三个目的

一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。

二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。

三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。

圆柱体积的教学反思12

本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我来谈谈自己的一些反思。

1、导入时,力求突破教材,有所创新

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

2、新课时,要实现人人参与,主动学习

学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,因为学校没有提供学具,所以我只能先让学生展开空间想象,结合圆面积的推导过程,借助课件一一展示推导过程。让学生观察发现把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的'体验,也有了充分的思考空间。

3、练习时,形式多样,层层递进

例题的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时考虑怎样才能让学生用最短的时间完成不同类型的题目。

(1)、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:v=sh。

(2)、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:v=πr2h。

(3)、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:v=π(d/2) 2h。

(4)、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:v=π(c÷π÷2) 2h。

(5)、已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:v=π(s侧÷h÷π÷2) 2h。

因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法。另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。不足之处

本想给学生准备学具,亲自动手操作圆柱体体积的推导过程,无奈学校没有学具,所以只能让孩子借助圆面积的推导过程展开想象,然后借助课件展示圆柱体积的推导过程,可能对一些学困生的理解还有困难。

圆柱体积的教学反思13

一、我在导入时,突破教材,有所创新

圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的.思维走向正确的方向,这时教师的引导才是行之有效的。

二、我教学新课时,实现人人参与,主动学习

学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

三、我在练习时,形式多样,层层递进

例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思。

圆柱体积的教学反思14

《圆锥的体积》一课的教学,是在掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。

一、让学生经历发现、提问、解决问题的全过程

新课一开始,我就利用教师出示一筒米,师:将这筒米倒在桌上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。

二、让学生在现实情境中体验和理解数学

在实验前让学生先猜想,再通过小组合作实验、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验报告单。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的'认识

1、情感的发展

小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。

2、思想的发展

小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。

三、多层次设计练习题

练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。

在教学后感觉到遗憾的是,由于教具的关系学生参与以小组合作学习的面很广但小组合作分工不太合理。使每个学生不是全身心投入到探究实验中去,这样少部份学生的积极性调动不高,有点遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力,这样的学习虽然是培养了学生的能力。但合作意识还需加强。小组学生的试验完成默契还需加强。

圆柱体积的教学反思15

圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。

一、让学生在现实情境中体验和理解数学

《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的`产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?采用小组讨论交流的形式。有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方

体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。

三、建立切拼表象,渗透极限思想

学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,很遗憾。

相关文章:

网站地图